Using routine emergency care data for public health surveillance in Europe

Conference “Making an Impact: what's new in emergency pre-hospital care research”, Cardiff/UK
27 February 2012

Thomas Krafft
Alexandra Ziemann

Department of International Health, Maastricht University, Netherlands & European Emergency Data – Research Network

Faculty of Health, Medicine and Life Sciences CAPHRI School for Public Health and Primary Care
Contents

• Introduction to “syndromic surveillance”

• Syndromic surveillance activities in the UK

• Syndromic surveillance based on routine pre-hospital emergency care data

• SIDARTHa
IMPORTANT INFORMATION ABOUT SWINE FLU

This leaflet contains important information to help you and your family - KEEP IT SAFE

SWINE FLU INFORMATION
0800 1 513 513
www.nhs.uk
www.direct.gov.uk/swineflu
As the filthy flood waters begin to subside, they are revealing a scene of devastated homes. Now there are warnings of a mounting health risk from toxic chemicals and fatal bugs left behind in the wake of the deluge.
A Case for Syndromic Surveillance

- Detecting (re)emerging diseases
- Situational awareness during disasters & mass gatherings
- Timely and reliable health reporting
- Human and animal health data
- Surveillance of communicable & non-communicable health threats
- Health care management and planning
- Surveillance of natural and man-made events
Syndromic Surveillance

- Health surveillance using information generated prior to laboratory confirmed diagnoses to buy time
- Based on existing data sources, e.g., calls to NHS Direct, GP visits, pharmacy sales
- Emergency data one main source for syndromic surveillance

* $t = \text{time between detection by syndromic (prediagnostic) surveillance and detection by traditional (diagnosis-based) surveillance}$

Contents

• Introduction to “syndromic surveillance”

• Syndromic surveillance activities in the UK

• Syndromic surveillance based on routine pre-hospital emergency care data

• SIDARTHa
Syndromic Surveillance in the UK

- **One of the longest established syndromic surveillance system in Europe (since 1999)**
- **Data sources:** NHS Direct/NHS 24, emergency departments, GP visits, unscheduled care, pilot: school absenteeism
Syndromic Surveillance in the UK

- Used for various events with (potential) public health impact
- Usefulness especially during unexpected events for which no other information is rapidly available (situational awareness)
Contents

- Introduction to “syndromic surveillance”
- Syndromic surveillance activities in the UK
- Syndromic surveillance based on routine pre-hospital emergency care data
- SIDARTHa
Who is using pre-hospital data for syndromic surveillance?

- **USA**: First Watch, New York City
- **Denmark**: Bioalarm
- **Austria (Tyrol)**: SIDARTH
- **India**: SEED
- **Australia, Canada, Italy, Switzerland**: single studies
...for what?

• **Influenza-like illness**: Australia, Austria, Denmark, USA
• **Heat waves**: Australia, Canada, Italy, Switzerland
• **Gastroenteritis**: Austria
• **Mass gathering, situational awareness**: Austria, France, USA
• **Fever/other infectious diseases**: India
Example: Denmark, Influenza-like illness

Figure 3
Ambulance dispatch activity compared to National influenza Surveillance Reporting Systems, Denmark, October 2003 – May 2004

- **Standardised intensity**
 - Central I
 - Central II
 - Central III
 - Central IV
 - Central V
 - Central VI

- **Influenza surveillance (sentinel)**
 - Observed
 - Expected
 - Threshold

In order to compare the data from the centrals the intensities have been scaled by dividing with the average number of transports for each central during the period 1 January 2002 to 31 March 2006. The vertical lines indicate the period where the observed number of influenza cases exceeded the threshold, i.e., the Sentinel system indicated an influenza epidemic.
Example: Switzerland, Heat wave
Example: India, Dengue outbreak

Weekly data for syndromic surveillance indicates an outbreak during 2nd week of September 2010.

Model Phase: April 2007 to July 2009

Test Phase: August 2009 to September 2010
Example: USA, Wildfires
Contents

- Introduction to "syndromic surveillance"
- Syndromic surveillance activities in the UK
- Syndromic surveillance based on routine pre-hospital emergency care data
- SIDARTHa
Our research activities at the interface of emergency care and public health

<table>
<thead>
<tr>
<th>Year</th>
<th>Project Description</th>
<th>Funding Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-2006:</td>
<td>European Emergency Data Project III: European Emergency Data-based Health Monitoring Indicators (co-funded by European Commission)</td>
<td></td>
</tr>
<tr>
<td>2004-2007:</td>
<td>Emergency care indicators for the EU Injury Data Base (co-funded by European Commission)</td>
<td></td>
</tr>
<tr>
<td>2008-2010:</td>
<td>SIDARTHa - European Emergency Data-based Syndromic Surveillance System (co-funded by European Commission)</td>
<td></td>
</tr>
<tr>
<td>2009-2011:</td>
<td>SEED I – SIDARTHa@INDIA (co-funded by Indian Council Medical Research & German Ministry Education/Research)</td>
<td></td>
</tr>
<tr>
<td>2011-2014:</td>
<td>SEED II – SIDARTHa@TIROL (co-funded by Leitstelle Tirol Gesellschaft mbH)</td>
<td></td>
</tr>
<tr>
<td>2011-2013:</td>
<td>SAM@EMR - SIDARTHa@Euregio Maas-Rhine</td>
<td></td>
</tr>
<tr>
<td>2010-2013:</td>
<td>Triple S-AGE –Syndromic Surveillance Systems in Europe (co-funded by European Commission)</td>
<td></td>
</tr>
</tbody>
</table>

Faculty of Health, Medicine and Life Sciences
SIDARTHa: European emergency data-based syndromic surveillance at regional level

Partners: Regional consortia of emergency care services and public health authorities from 12 European countries

Co-funded by European Commission (DG Sanco), 2008-2010

Project elements:

- **Assessment** of emergency data utility for syndromic surveillance in Europe
- **Conceptualisation** of a European-wide regional syndromic surveillance approach and system
- **Implementation, test and evaluation** of the syndromic surveillance system SIDARTHa in four regions in Europe

www.sidartha.eu
SIDARTHa Approach

Routine data from (i) emergency medical dispatch centres, (ii) ambulance run-sheets and (iii) emergency department information systems is analysed for spatial and temporal aberrations at the local level.

SIDARTHa alerts emergency care professionals and local public health authorities if a threshold is exceeded; Via national authorities the European Commission, ECDC and WHO are informed about local and cross-border alerts; SIDARTHa only complements but does not replace any existing system.
SIDARTHa Partners

- Capital Region of Denmark
- Province of Buskerud
- County of Goeppingen
- Belgium
- Department des Hauts-de-Seine
- Autonomous Region of Cantabria
- Province of Genoa
- District of Kuopio
- City of Prague
- State of Tyrol
- City of Budapest (Central Region)
- City of Antalya
SIDARTHa - Basis

Max. time until emergency data is electronically available (in days)
(n=32 emergency institutions representing regions of SIDARTHa consortium - no nat)

AT BE CZ DE DK ES FI FR HU IT NO TR

Emergency medical dispatch centre (computer database)
Patient documentation of ambulance crew
Patient documentation of emergency physician
Emergency department (hospital information system)
SIDARTHa - Basis

- Influenza-like-illness
- Gastrointestinal Syndrome
- Environmental Syndrome
- Respiratory Syndrome
- Unspecific Syndrome (volume)
SIDARTHNa - Basis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Dispatch</th>
<th>Ambulance</th>
<th>Hospital</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date/Time</td>
<td>Receiving call time</td>
<td>Alarm time</td>
<td>Access time</td>
</tr>
<tr>
<td>Place of event/patient address</td>
<td>Event address; x/y coordinates</td>
<td>Event and patient address; GPS signals</td>
<td>Patient address/ZIP code</td>
</tr>
<tr>
<td>Syndrome</td>
<td>Chief complaint (free text), dispatch codes</td>
<td>Working diagnosis, ICD9/ICD10</td>
<td>Complaint from triage (free text)/ICD9/ICD10</td>
</tr>
<tr>
<td>Patient age & gender</td>
<td>Age & gender</td>
<td>Age & gender</td>
<td>Age & gender</td>
</tr>
<tr>
<td>Severity of case</td>
<td>Priority of response</td>
<td>Priority of response</td>
<td>Triage codes</td>
</tr>
</tbody>
</table>

SIDARTHNa Data Set
SIDARTHa – Two active automated systems
SIDARTHa – Case study results

- **Region:** Tyrol (Austria)
- **Event:** Norovirus Outbreak (in tourists)
- **Data Source:** Ambulance Service (staffed with emergency physicians)
- **Strength:** Sensitivity (space-time algorithm)
- **Weakness:** Sensitivity: rare disease in emergency care - only severe or large clusters of gastrointestinal cases can be detected
SIDARTHα – Case study results

- **Region**: Cantabria (Spain)
- **Event**: Seasonal influenza
- **Data Source**: Emergency Department
- **Strength**: Timeliness, Specificity (specific case definition, treatment seeking behaviour), Sensitivity (CUSUM Algorithm)
- **Weakness**: Transferability (case definition not as specific in other emergency departments/countries or other data sources)
SIDARTHa – Case study results

Case Study: Volcanic Ash Plume
Implementation Site: Austria (Tyrol)
Detection Algorithm: CUSUM and EARS
Syndrome: Traffic Accidents (n = 16), Respiratory cases (n = 21),
Unspecific cases (n = 514)
Data Source: Emergency Medical Dispatch Centre
Alert Period: 15 April 2010 - 21 April 2010

- **Region:** Tyrol (Austria)
- **Event:** Volcanic Ash Plume 2010 (Respiratory syndrome, cardiac syndrome, traffic accidents)
- **Data Source:** Emergency Medical Dispatch Data
- **Strength:** Flexibility (new syndromes), Timeliness (reporting)
- **Weakness:** Specificity: cases cannot be related to ash cloud
Future Plans

• Implementation sites are further developing SIDARTHa (e.g., “from signal to alert”, communication strategies)

• Dutch dispatch centres using Advanced Medical Priority Dispatch Systems are interested to install SIDARTHa

• Chinese Center for Disease Control and Prevention is interested in SIDARTHa and we are exploring potential areas of joint collaboration
Pre-hospital emergency data in public health

Routine data emergency care
- Operational data
- Demographic data
- Geographic data
- Treatment data
- Patient condition data

Analysis
- Demand
- Technical performance
- Clinical performance
- Patient condition

Application area in public health
- Health reporting
- Early warning
- Surveillance
- Benchmarking
- Prevention
Correspondence

Thomas Krafft
Alexandra Ziemann

Department of International Health
School of Public Health and Primary Care
Maastricht University

European Emergency Data – Research Network

Thomas.Krafft@maastrichtuniversity.nl
Alexandra.Ziemann@maastrichtuniversity.nl

www.maastrichtuniversity.nl/inthealth
www.syndromicsurveillance.eu
www.sidartha.eu
www.eed-network.eu